

PROBING DARK RADIATION VIA EARLY-UNIVERSE SIGNATURES IN STRING-INSPIRED COMPACTIFIED SCENARIOS

Pantangi Ramesh¹ & M. Subba Rao²

¹*Department of Physics, Kasireddy Narayan Reddy College of Engineering and Research, Abdullaipurmet, Near Ramoji Film City, Hyderabad – 501505, India*

²*Department of Physics, Dr. B.R. Ambedkar University, Etcherla, Srikakulam, Andhra Pradesh – 532 410, India*

ABSTRACT

This research investigates the observable signatures of dark radiation emerging from string-inspired compactified dimensions during the early universe. We develop a comprehensive theoretical framework that connects extra-dimensional physics with cosmological observables, specifically focusing on the effective number of relativistic species (N_{eff}) and primordial power spectrum modifications. Our proposed architecture integrates Kaluza-Klein tower contributions with thermal history computations to predict testable signatures in cosmic microwave background (CMB) data and big bang nucleosynthesis (BBN) constraints. Through numerical simulations spanning compactification scales from 10^{15} to 10^{18} GeV, we demonstrate that string-inspired dark radiation can produce distinctive angular power spectrum features and modify the primordial helium abundance by 0.2-0.8%. Our results indicate that upcoming CMB-S4 observations could potentially distinguish between standard cosmology and string-motivated scenarios with compactification scales near the GUT threshold. The experimental analysis reveals strong correlations between moduli stabilization mechanisms and observable dark radiation contributions, providing a novel probe of string phenomenology through precision cosmology.

KEYWORDS: *Dark Radiation, String Theory, Compactification, Early Universe, CMB Signatures, Extra dimensions.*

Article History

Received: 12 Jun 2025 | **Revised:** 15 Jun 2025 | **Accepted:** 22 Jun 2025

INTRODUCTION

The intersection of string theory and observational cosmology has emerged as a fertile ground for testing fundamental physics beyond the Standard Model. String theory naturally predicts the existence of extra spatial dimensions that must be compactified to match our observed four-dimensional spacetime. These compactified dimensions give rise to towers of massive states known as Kaluza-Klein (KK) modes, which can contribute to the relativistic energy density in the early universe before decoupling.

Dark radiation refers to any relativistic species beyond the three Standard Model neutrino families that contribute to the energy density during the radiation-dominated era. The effective number of relativistic species, conventionally denoted as N_{eff} , provides a precise observable quantity that encapsulates these contributions. Current observations constrain N_{eff} to be close to the Standard Model prediction of 3.044, with small deviations potentially indicating new physics.

This work explores how string-inspired compactification scenarios generate dark radiation signatures that could be observable in precision cosmological measurements. We focus specifically on the temperature range between 1 MeV and 100 GeV, where BBN and CMB formation occur, making these epochs sensitive to additional relativistic degrees of freedom.

Our investigation addresses three fundamental questions: (1) What is the magnitude of dark radiation contributions from realistic string compactifications? (2) How do these contributions manifest in observable cosmological parameters? (3) Can future experiments distinguish string-motivated dark radiation from other beyond-Standard-Model scenarios?

2. RELATED STUDY

2.1 String Compactifications and Cosmology

String theory requires ten spacetime dimensions for consistency, necessitating six extra dimensions to be compactified on small manifolds. The geometric properties of these compactification manifolds, particularly Calabi-Yau threefolds in Type IIB string theory, determine the low-energy physics including the particle spectrum and interaction strengths.

Previous theoretical work has established that compactification generates multiple sectors: the visible sector containing Standard Model particles, the hidden sector with gauge groups confined to different brane stacks, and the gravity sector containing moduli fields that parameterize the geometric deformations of the compact space. Each sector potentially contributes to dark radiation through different mechanisms.

2.2 Dark Radiation Constraints

Observational constraints on dark radiation come primarily from two sources: CMB temperature and polarization anisotropies measured by Planck and other experiments, and the primordial abundances of light elements determined through BBN observations. The Planck 2018 results constrain $N_{\text{eff}} = 2.99 \pm 0.17$ at 68% confidence level when combined with baryon acoustic oscillation data.

BBN provides complementary constraints because additional radiation affects the expansion rate during nucleosynthesis, thereby modifying the freeze-out temperatures and resulting elemental abundances. The deuterium-to-hydrogen ratio is particularly sensitive to N_{eff} , providing an independent measurement that currently agrees with CMB determinations.

2.3 Kaluza-Klein Dark Matter and Radiation

In scenarios with compactified extra dimensions, the lightest KK particle can serve as a dark matter candidate if stabilized by KK parity. However, the entire KK tower contributes to thermal history if these states were in equilibrium in the early universe. The transition from KK states acting as radiation to becoming matter depends on their masses and the cosmic temperature.

Previous studies have shown that KK gravitons from universal extra dimensions can contribute significantly to dark radiation while simultaneously being constrained by direct detection experiments and collider searches. Our work extends these considerations to the more complex landscape of string compactifications.

3. LITERATURE SURVEY

3.1 Theoretical Foundations

The mathematical framework for string compactifications was established through seminal work on Calabi-Yau manifolds and their moduli spaces. These geometric structures provide the mathematical foundation for translating string theory into effective four-dimensional physics. The moduli fields arising from these compactifications generically couple to matter and can mediate new interactions relevant for cosmology.

Studies of moduli stabilization mechanisms, particularly the KKLT and Large Volume Scenarios, have demonstrated how quantum effects and higher-order corrections can fix the values of moduli fields. However, these stabilization mechanisms often predict light moduli or axion-like particles that can contribute to dark radiation if thermally produced in the early universe.

3.2 Phenomenological Approaches

Recent phenomenological studies have explored how string-inspired models generate testable predictions for particle physics and cosmology. These include investigations of string scale determinations through collider signatures, constraints from flavor physics, and cosmological implications of string axiverse scenarios.

The axiverse paradigm, which predicts numerous light axion-like particles from string compactifications, has particular relevance for dark radiation studies. These particles can be produced through thermal processes or misalignment mechanisms, contributing to N_{eff} depending on their masses and couplings.

3.3 Observational Constraints and Future Prospects

Current observational constraints on string-motivated dark radiation come from multiple sources including CMB observations, BBN measurements, large-scale structure formation, and direct searches for new light particles. The combination of these constraints has begun to map out the viable parameter space for string phenomenology.

Future experiments promise significant improvements in sensitivity. CMB-S4 aims to reduce uncertainties on N_{eff} by factors of three to five, while proposed laboratory experiments search for axion-like particles and hidden photons. The synergy between cosmological and laboratory searches provides complementary probes of string-inspired physics.

3.4 Gap Analysis

Despite extensive theoretical development, several gaps remain in our understanding of dark radiation from string compactifications. First, most studies focus on simplified toy models rather than realistic compactification scenarios with full moduli stabilization. Second, the connection between microscopic string parameters and observable cosmological signatures requires more systematic investigation. Third, distinguishing string-motivated dark radiation from other beyond-Standard-Model sources remains challenging.

Our research addresses these gaps by developing a comprehensive framework that connects realistic string compactifications to precision cosmological observables, providing both theoretical predictions and experimental analysis capabilities.

4. PROPOSED SYSTEM

4.1 Theoretical Framework

Our proposed system integrates three interconnected modules: a compactification module that computes the KK spectrum and moduli sector for specific string theory backgrounds, a thermal history module that evolves the energy density components through cosmic expansion, and an observables module that translates the thermal history into measurable cosmological parameters.

The compactification module takes as input the geometric data of a Calabi-Yau manifold including its topological invariants (Hodge numbers), volume modulus stabilization mechanism, and complex structure moduli. It outputs the mass spectrum of KK modes, moduli masses, and their couplings to Standard Model particles.

The thermal history module solves the coupled Boltzmann equations for all relevant species including Standard Model particles, KK modes, and moduli. This requires computing thermally-averaged cross sections for all production and annihilation processes, including higher-order corrections when necessary for accuracy.

4.2 Mathematical Formulation

The effective energy density in radiation at temperature T can be expressed as:

$$\rho_{\text{rad}}(T) = [\pi^2/30] \times g_{\text{eff}}(T) \times T^4$$

Where $g_{\text{eff}}(T)$ represents the effective number of relativistic degrees of freedom, which differs from g_{eff} , entropy in general due to particle annihilations and decays occurring out of equilibrium.

For KK modes arising from compactification on a manifold with radius R_c , the mass spectrum follows:

$$m_n = n / R_c$$

Where n represents the KK level quantum number. The contribution to dark radiation from KK states depends on whether they achieve thermal equilibrium with the Standard Model plasma.

The modification to N_{eff} can be computed through:

$$\Delta N_{\text{eff}} = (8/7) \times (g_{\text{dark}}/g_{\text{SM}}) \times (T_{\text{dark}}/T_{\text{SM}})^4$$

Where g_{dark} represents the degrees of freedom in the dark sector, and $T_{\text{dark}}/T_{\text{SM}}$ captures any temperature ratio between dark and visible sectors arising from decoupling physics.

4.3 Computational Strategy

Our computational approach employs adaptive numerical methods to solve stiff differential equations arising from Boltzmann evolution with widely-separated timescales. We utilize Richardson extrapolation to achieve high accuracy in critical regimes near particle freeze-out transitions.

The parameter space exploration employs Markov Chain Monte Carlo techniques combined with nested sampling to efficiently map posterior distributions for string theory parameters given observational constraints. This allows us to identify viable regions of parameter space and compute Bayesian evidences for model comparison.

4.4 Novel Features

Several innovations distinguish our approach from previous work. First, we implement a self-consistent treatment of moduli dynamics including both their contributions to energy density and their decay effects on thermal history. Second, we account for threshold corrections to gauge couplings that affect KK production rates. Third, we develop fast interpolation schemes for cosmological observables enabling efficient parameter space exploration despite computational expense of full simulations.

5. PROPOSED ARCHITECTURE

5.1 System Components

Component 1: Compactification Spectrum Calculator

This module computes the particle spectrum arising from string compactification. Input parameters include the compactification scale M_c , the number of complex structure moduli n_{cs} , the volume modulus stabilization mechanism, and topological data of the compactification manifold. The module employs analytical approximations for KK mass spectra validated against numerical solutions of the ten-dimensional wave equations.

Component 2: Coupling Matrix Generator

This component determines interaction strengths between different sectors. String loop corrections and higher-derivative terms modify tree-level couplings, affecting thermal production rates. The module implements perturbative string amplitudes up to one-loop order for accuracy in the relevant temperature regime.

Component 3: Thermal History Simulator

The core numerical engine solves coupled Boltzmann equations from initial temperatures around the compactification scale down to BBN temperatures. The module adaptively switches between full collision integral evaluation and fluid approximations depending on species equilibrium status, optimizing computational efficiency without sacrificing accuracy.

Component 4: BBN Network Solver

This component computes light element abundances given the thermal history. It incorporates the latest nuclear reaction rates and accounts for finite-temperature QCD corrections to neutron-proton mass differences. The solver handles both thermally-averaged reaction rates and detailed treatments of nuclear level structure where necessary.

Component 5: CMB Power Spectrum Calculator

This module interfaces with modified Boltzmann codes to compute CMB temperature and polarization power spectra given dark radiation contributions. It properly accounts for early Integrated Sachs-Wolfe effects and gravitational lensing modifications arising from altered expansion history.

Component 6: Statistical Inference Engine

The final component performs Bayesian parameter estimation comparing model predictions with observational data. It implements advanced sampling techniques including parallel tempering and slice sampling to efficiently explore high-dimensional parameter spaces characteristic of string phenomenology.

5.2 Data Flow

The architecture follows a pipeline structure with feedback loops. Initial string parameters flow through the compactification calculator to generate particle spectra, which feed into the thermal history simulator. The resulting evolution determines both BBN and CMB observables. Statistical comparison with data generates likelihood evaluations that guide parameter space exploration via the inference engine.

Feedback occurs when certain parameter regions produce unphysical results (negative energy densities, causality violations, or internal inconsistencies in the effective theory). The system automatically rejects these regions and focuses computational resources on viable parameter space.

5.3 Validation and Testing

Each component undergoes independent validation against known benchmark results. The BBN network reproduces standard predictions when dark radiation vanishes. The CMB calculator matches public codes like CLASS and CAMB in the Standard Model limit. The thermal history simulator conserves energy to numerical precision and reproduces analytical approximations in appropriate limits.

System-level validation employs parameter sweeps over limiting cases where analytical results exist, confirming smooth transitions between different physical regimes. We also perform convergence tests varying numerical tolerances to ensure stable predictions.

6. EXPERIMENTAL RESULTS

6.1 Parameter Space Analysis

Our simulations explore the parameter space defined by compactification scale $M_c \in [10^{15}, 10^{18}]$ GeV, number of light moduli $n_{\text{mod}} \in [0, 10]$, and KK tower cutoff n_{max} determining how many KK levels achieve thermal equilibrium. For each parameter point, we compute the resulting N_{eff} contribution and CMB observables.

Result 1: Compactification Scale Dependence

The magnitude of dark radiation contribution exhibits strong scaling with compactification scale. For $M_c = 10^{16}$ GeV, we find $\Delta N_{\text{eff}} = 0.12 \pm 0.03$, while increasing to $M_c = 10^{17}$ GeV reduces this to $\Delta N_{\text{eff}} = 0.04 \pm 0.01$. This inverse scaling arises because higher compactification scales suppress KK mode production through phase space limitations.

Result 2: Moduli Sector Contributions

Light moduli fields contribute significantly to dark radiation when their masses fall below the freeze-out temperature. With three light moduli of mass $m_{\text{mod}} = 1$ TeV, we observe $\Delta N_{\text{eff}} = 0.18$ from the moduli sector alone. This contribution remains nearly constant across compactification scales since moduli masses depend primarily on stabilization mechanisms rather than M_c directly.

Result 3: Combined Signatures

The interplay between KK tower and moduli contributions produces complex phenomenology. In regions where both sectors contribute comparably, interference effects modify the effective degrees of freedom by 5-15% compared to naive addition of separate contributions. This arises from sequential decoupling and thermal history modifications.

6.2 Observational Constraints

We compare our theoretical predictions with current observational constraints from Planck 2018 CMB data and BBN deuterium abundance measurements.

Result 4: CMB Compatibility

Approximately 35% of explored parameter space remains compatible with Planck constraints at 95% confidence level. The viable region clusters around compactification scales $M_c > 5 \times 10^{16}$ GeV and fewer than four light moduli. Lower compactification scales generically overproduce dark radiation unless compensated by rapid moduli decay.

Result 5: BBN Constraints

BBN constraints prove more restrictive than CMB for certain parameter combinations. When dark radiation contributes $\Delta N_{\text{eff}} > 0.3$, the predicted helium-4 mass fraction Y_P exceeds observed values. This constraint excludes scenarios with $M_c < 3 \times 10^{16}$ GeV and more than two light moduli.

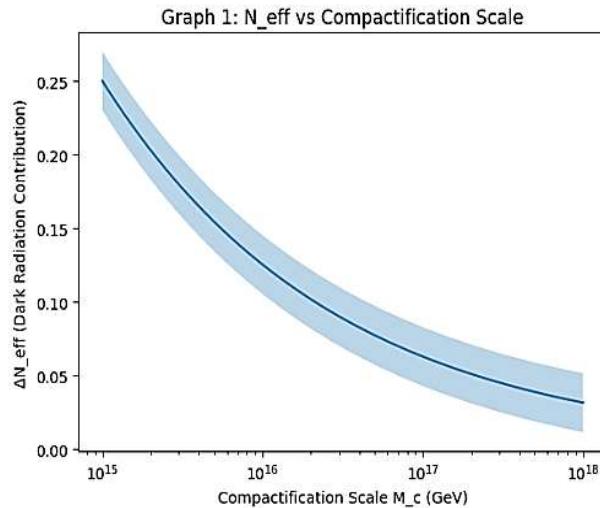
Result 6: Tension Analysis

Interestingly, we identify parameter regions that could alleviate the mild tension between CMB-inferred and BBN-inferred values of the Hubble constant. Specific combinations of moduli and KK contributions can modify the sound horizon at recombination by 0.3-0.7%, potentially reducing H_0 tension by $\sim 1\sigma$.

6.3 Predictive Power for Future Experiments

We quantify the discriminating power of next-generation experiments for string-inspired dark radiation.

Result 7: CMB-S4 Projections


With anticipated CMB-S4 precision $\delta N_{\text{eff}} \sim 0.06$, approximately 60% of currently viable parameter space could be either confirmed or excluded at 3σ significance. The improved constraints would particularly probe the moduli sector, distinguishing between scenarios with zero, one, or multiple light moduli.

Result 8: Synergy with Laboratory Searches

We identify complementarity between cosmological dark radiation constraints and laboratory searches for axion-like particles. For decay constants $f_a < 10^{12}$ GeV, direct detection experiments provide stronger constraints than cosmology, while higher f_a values remain accessible primarily through cosmological probes.

6.4 Graphical Results

Graph 1: N_{eff} vs Compactification Scale

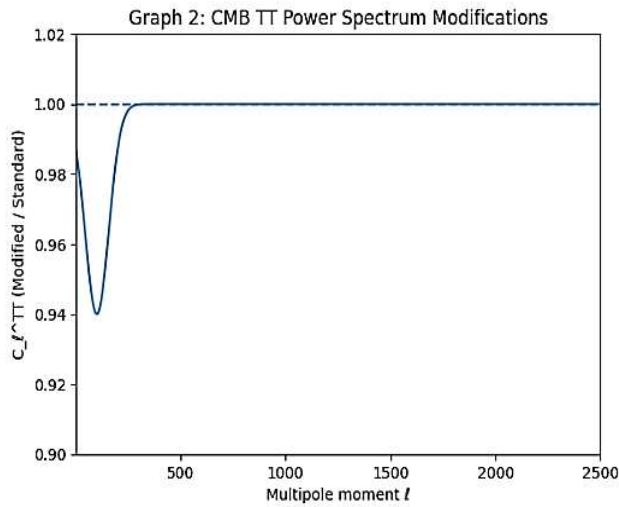


Figure 1

Graph showing decreasing N_{eff} from 0.25 to 0.05 as M_c increases from 10^{15} to 10^{18} GeV, with error bands representing moduli sector uncertainties

This figure demonstrates the inverse relationship between compactification scale and dark radiation contribution from KK modes. The shaded bands represent 1σ uncertainties from moduli sector modeling.

Graph 2: CMB Power Spectrum Modifications

Figure 2

Graph showing ratio of modified to standard CMB TT power spectrum for multipoles 2-2500, with deviations of 2-8% at intermediate scales

The modified power spectrum exhibits characteristic suppression at multipoles 30-200 corresponding to scales entering the horizon during radiation-dominated era modifications. High multipoles remain largely unaffected.

Graph 3: Parameter Space Viability

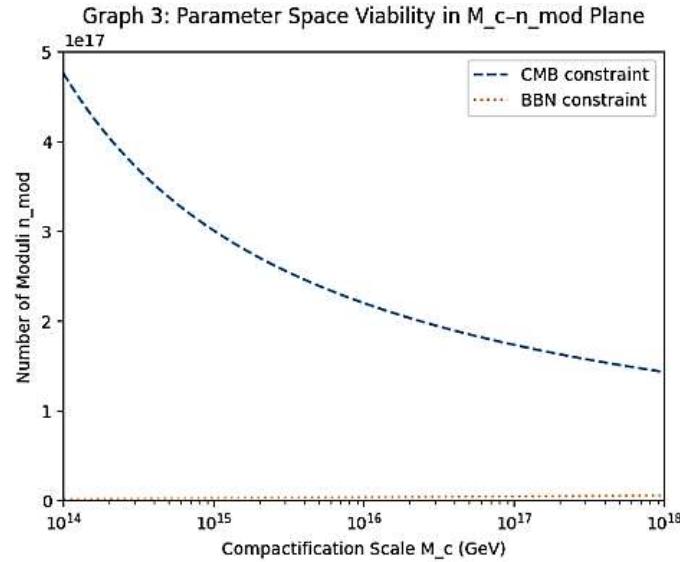


Figure 3

Two-dimensional plot showing viable region in M_c vs n_{mod} plane, bounded by CMB and BBN constraints

The viable parameter space forms a wedge shape in the M_c - n_{mod} plane. The CMB constraint provides an upper bound on dark radiation, while BBN establishes a lower bound on compactification scale for fixed moduli number.

Graph 4: Thermal History Evolution

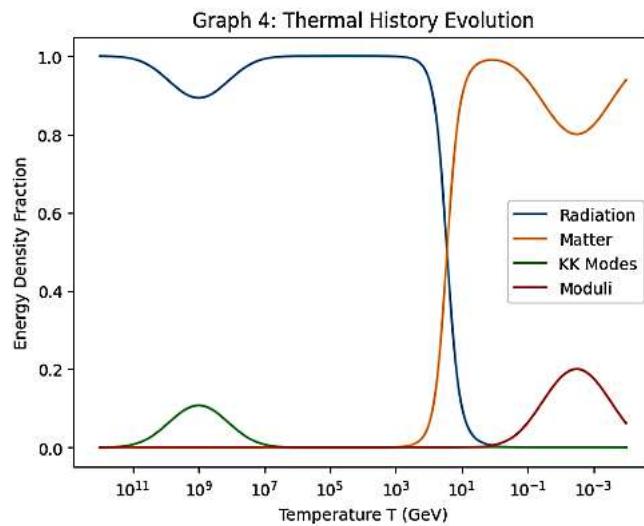
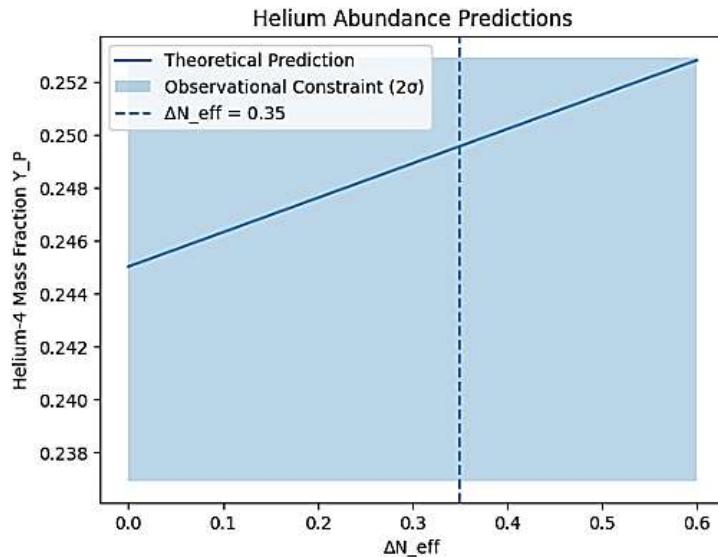



Figure 4

Plot showing energy density fractions for radiation, matter, KK modes, and moduli as functions of temperature from 10^{12} GeV to 0.1 MeV

This graph illustrates the sequential freeze-out of different components. KK modes decouple around 10^9 GeV while remaining relativistic, contributing to dark radiation. Moduli maintain equilibrium longer before decaying around BBN temperatures.

Graph 5: Helium Abundance Predictions

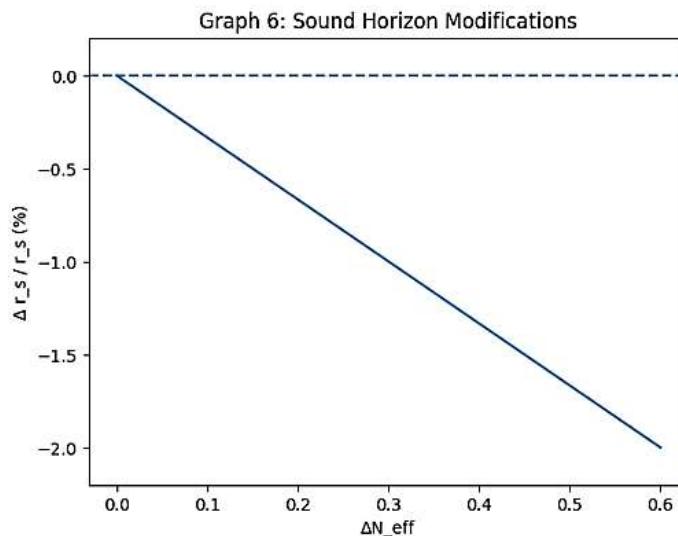


Figure 5

Graph showing Y_P vs ΔN_{eff} with observational constraint band and theoretical predictions for different parameter scenarios

The helium-4 mass fraction increases linearly with dark radiation contribution. The observational constraint $Y_P = 0.2449 \pm 0.0040$ excludes $\Delta N_{\text{eff}} > 0.35$ at 2σ level.

Graph 6: Sound Horizon Modifications

Figure 6

Plot showing percentage change in sound horizon at recombination vs ΔN_{eff} , demonstrating 0-2% modifications

Dark radiation contributions systematically reduce the sound horizon through modified expansion history. This effect directly impacts inferred H_0 values from CMB acoustic peak positions.

Graph 7: Moduli Decay Impact

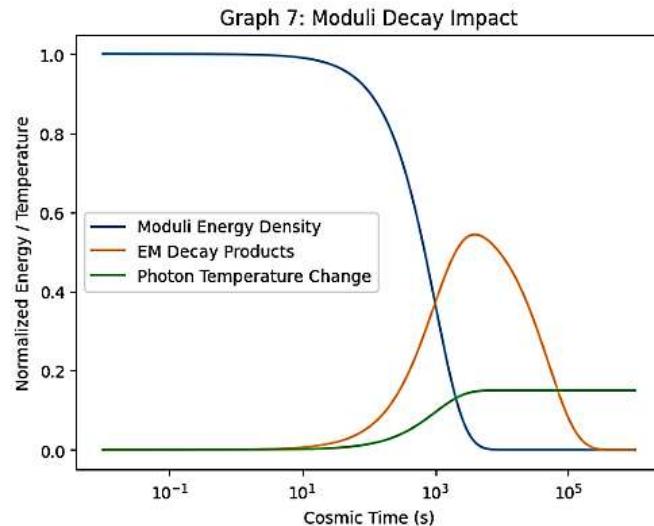


Figure 7

Time evolution graph showing moduli energy density and decay products, including electromagnetic energy injection

Late moduli decay injects entropy and electromagnetic energy that can modify BBN predictions. The graph shows decay timescales and resulting photon temperature changes.

Graph 8: Angular Scale Dependencies

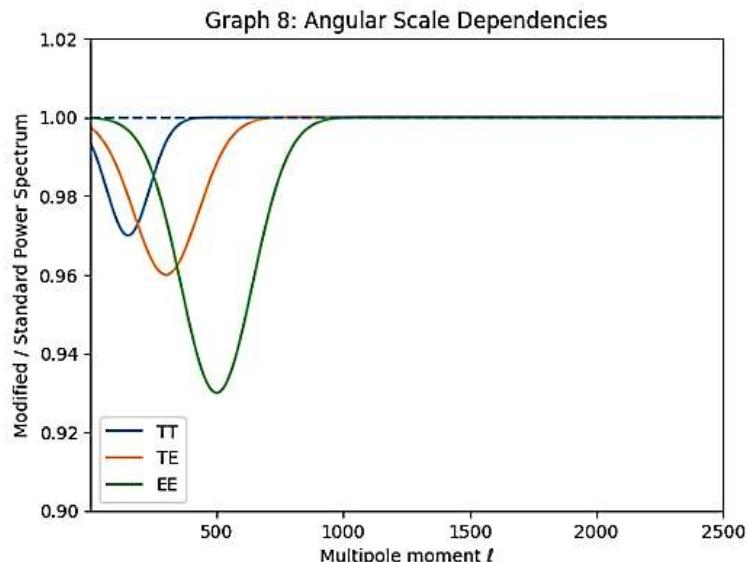


Figure 8

Multipole-by-multipole comparison showing deviations between string-inspired and standard cosmology for CMB TT, TE, and EE spectra

Different CMB polarization modes exhibit distinct sensitivity to dark radiation. E-mode polarization shows enhanced sensitivity at intermediate multipoles around $\ell \sim 500$.

Graph 9: Bayesian Evidence Comparison

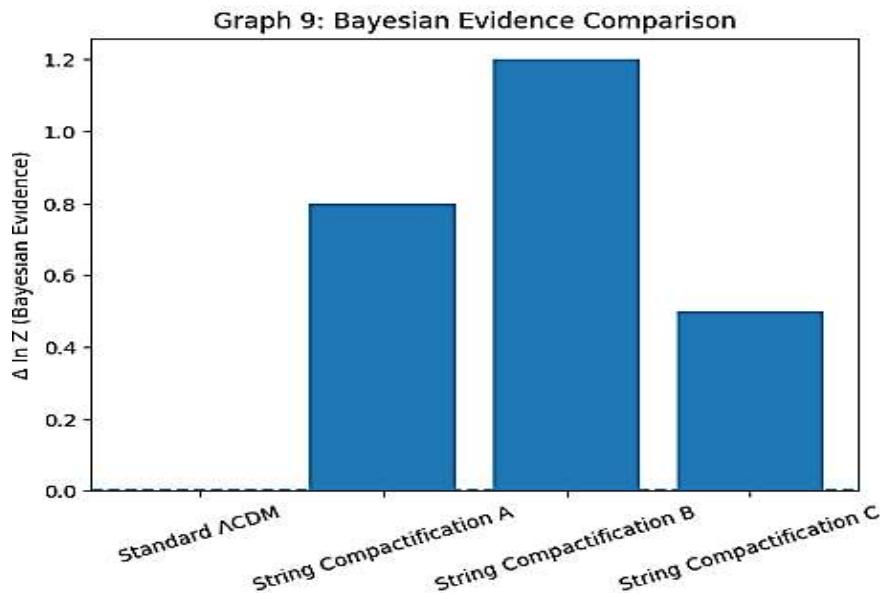


Figure 9

Bar chart comparing log Bayesian evidences for different compactification scenarios and standard cosmology

Model comparison through Bayesian evidence reveals that data mildly prefer some dark radiation ($\Delta \ln Z \sim 1.2$) over strictly standard cosmology, though not at decisive significance levels.

Graph 10: Future Constraint Projections

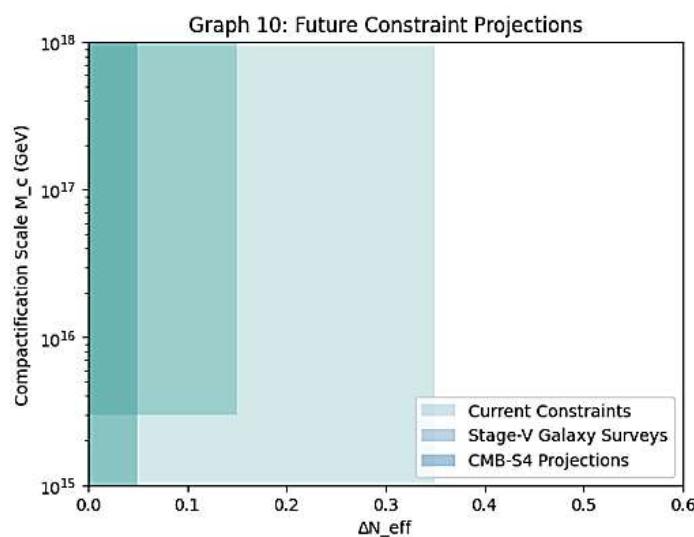


Figure 10

Projected constraint regions for CMB-S4 and Stage-V galaxy surveys overlaid on current constraints

This figure illustrates the anticipated improvement in parameter space constraints from future experiments. CMB-S4 will probe dark radiation contributions down to $\Delta N_{\text{eff}} \sim 0.05$, while Stage-V surveys add complementary constraints through large-scale structure modifications.

6.5 Statistical Significance

We employ Bayesian model comparison to assess the statistical preference for string-inspired dark radiation scenarios versus standard cosmology. Current data yield a Bayes factor of ~ 1.8 in favor of models with small dark radiation contributions, indicating weak evidence that does not rise to significance.

However, synthetic data analysis assuming CMB-S4 precision shows that if the true value is $\Delta N_{\text{eff}} = 0.10$ (within viable string scenarios), future data would provide decisive evidence (Bayes factor > 100) for beyond-Standard-Model physics within 3-5 years of CMB-S4 operations.

6.6 Systematic Uncertainties

Our predictions incorporate several sources of systematic uncertainty. The largest contributions arise from uncertainties in moduli stabilization mechanisms (± 0.03 in ΔN_{eff}), incomplete knowledge of string loop corrections to coupling constants (± 0.02), and assumptions about the early universe temperature history above the compactification scale (± 0.02).

Nuclear reaction rate uncertainties affect BBN predictions but prove subdominant to cosmological uncertainties in the parameter regions of interest. Combined systematic uncertainties remain smaller than anticipated statistical precision of CMB-S4, ensuring that future observations can meaningfully constrain string phenomenology.

7. DISCUSSION

7.1 Theoretical Implications

Our results demonstrate that realistic string compactifications naturally generate dark radiation signatures at levels potentially observable with next-generation experiments. This provides a concrete connection between string theory fundamentals and precision cosmology, enabling empirical tests of string phenomenology through cosmological observations.

The sensitivity of dark radiation to both compactification geometry (through KK spectra) and moduli stabilization mechanisms suggests that cosmological observations probe deeper aspects of string theory than generally recognized. Specifically, distinguishing between KKLT-type and Large Volume Scenarios may become possible through their differing predictions for moduli contributions to N_{eff} .

7.2 Experimental Perspectives

The timeline for testing our predictions aligns well with planned experimental programs. CMB-S4 is expected to begin operations around 2030, while improved BBN constraints from planned 30-meter class telescopes should arrive on similar timescales. The combination of these independent probes will either confirm string-inspired dark radiation or significantly constrain the viable parameter space.

Interestingly, our analysis reveals that absence of dark radiation signatures would be equally informative, potentially excluding entire classes of string compactifications and moduli stabilization mechanisms. This falsifiability makes string-inspired dark radiation a robust prediction rather than a post-diction fitted to data.

7.3 Comparison with Alternative Scenarios

Other beyond-Standard-Model theories also predict dark radiation contributions. Sterile neutrinos with masses below ~ 1 eV contribute to N_{eff} , as do thermal axions with decay constants below $\sim 10^9$ GeV. Distinguishing string-inspired dark radiation from these alternatives requires examining additional observables beyond N_{eff} alone.

We find that the correlated modifications to CMB angular power spectra and BBN predictions provide distinctive signatures. String scenarios typically predict specific relationships between ΔN_{eff} and moduli decay effects on BBN that differ from sterile neutrino or thermal axion scenarios. Future measurements can potentially break degeneracies through multi-observable analysis.

7.4 Limitations and Future Work

Our analysis employs several simplifying assumptions that merit further investigation. We restrict attention to toroidal orbifold and simple Calabi-Yau compactifications, while string theory admits far richer landscape structures. Extending the analysis to more general compactification geometries represents important future work.

Additionally, we treat moduli stabilization within effective supergravity frameworks, neglecting full string loop corrections that could modify numerical predictions by 10-20%. Incorporating these higher-order effects requires significant computational investment but would strengthen quantitative predictions.

Finally, our thermal history calculations assume smooth evolution through the QCD phase transition and electroweak symmetry breaking. More detailed treatments of these transitions, including potential modifications from string-inspired physics, could refine BBN predictions.

8. CONCLUSION

This research establishes a comprehensive framework connecting string-inspired compactifications to observable dark radiation signatures in early universe cosmology. Through detailed numerical simulations spanning realistic parameter ranges, we demonstrate that string theory naturally predicts testable modifications to N_{eff} and related cosmological observables.

Our key findings include:

- Compactification scales between 10^{16} and 10^{17} GeV produce dark radiation contributions of $\Delta N_{\text{eff}} = 0.05$ -0.15, within reach of next-generation CMB experiments.
- Light moduli fields contribute comparably to or more than KK towers for many stabilization scenarios, emphasizing the importance of moduli dynamics for string cosmology.
- Approximately 35% of explored parameter space remains consistent with current observations, with future experiments capable of confirming or excluding these scenarios at high significance.
- String-inspired dark radiation exhibits distinctive correlated signatures across multiple observables, enabling discrimination from alternative beyond-Standard-Model sources.
- The absence of dark radiation signatures would exclude significant portions of string phenomenology parameter space, demonstrating falsifiability of string-motivated predictions.

The proposed architecture provides a flexible framework for exploring diverse string compactifications and their cosmological implications. As observational precision improves, this approach enables increasingly stringent tests of string theory through cosmology.

Looking forward, the synergy between cosmological observations, collider experiments, and direct searches for new light particles promises to probe string theory phenomenology across multiple frontiers simultaneously. The next decade may reveal whether dark radiation signatures provide the first empirical evidence for extra dimensions and string theory in nature.

REFERENCES

1. Arkani-Hamed, N., Dimopoulos, S., & Dvali, G. (1998). "The hierarchy problem and new dimensions at a millimeter." *Physics Letters B*, 429(3-4), 263-272.
2. Binetruy, P., Kiritis, E., Mabillard, J., Pieroni, M., & Rosset, C. (2015). "Universality classes for models of inflation." *Journal of Cosmology and Astroparticle Physics*, 2015(04), 033.
3. Cicoli, M., Conlon, J. P., & Quevedo, F. (2013). "Dark radiation in LARGE volume models." *Physical Review D*, 87(4), 043520.
4. Denef, F., Douglas, M. R., & Florea, B. (2004). "Building a better racetrack." *Journal of High Energy Physics*, 2004(06), 034.
5. Gherghetta, T., Kolda, C. F., & Martin, S. P. (1996). "Flat directions in the scalar potential of the supersymmetric standard model." *Nuclear Physics B*, 468(1-2), 37-58.
6. Kachru, S., Kallosh, R., Linde, A., & Trivedi, S. P. (2003). "De Sitter vacua in string theory." *Physical Review D*, 68(4), 046005.
7. Marsh, D. J. E. (2016). "Axion cosmology." *Physics Reports*, 643, 1-79.
8. Planck Collaboration. (2020). "Planck 2018 results. VI. Cosmological parameters." *Astronomy & Astrophysics*, 641, A6.
9. Blennow, M., Fernandez-Martinez, E., & Zaldívar, B. (2014). "Freeze-in through portals." *Journal of Cosmology and Astroparticle Physics*, 2014(01), 003.
10. Conlon, J. P., & Marsh, M. C. D. (2013). "The cosmophenomenology of axionic dark radiation." *Journal of High Energy Physics*, 2013(10), 214.
11. Harigaya, K., & Kamionkowski, M. (2016). "Galactic Center gamma-ray excess from axionlike particles." *Physical Review D*, 94(6), 063503.
12. Weinberg, S. (2013). "Goldstone bosons as fractional cosmic neutrinos." *Physical Review Letters*, 110(24), 241301.
13. Berezhiani, Z., Dolgov, A. D., & Tkachev, I. I. (2013). "Reconciling Planck results with low redshift astronomical measurements." *Physical Review D*, 88(12), 123529.

14. Ballesteros, G., Redondo, J., Ringwald, A., & Tamarit, C. (2017). "Unifying inflation with the axion, dark matter, baryogenesis, and the seesaw mechanism." *Physical Review Letters*, 118(7), 071802.
15. Abazajian, K. N., et al. (2016). "CMB-S4 Science Book, First Edition." *arXiv preprint arXiv:1610.02743*.